Read data from
library(readxl)
library(haven)
excel_sheets('sample.xls')
## [1] "ecom"
read_excel('sample.xls', sheet = 1)
## # A tibble: 7 x 5
## channel users new_users sessions bounce_rate
## <chr> <dbl> <dbl> <dbl> <chr>
## 1 Organic Search 43296 40238 50810 48.72%
## 2 Direct 12916 12311 16419 49.27%
## 3 Referral 10983 7636 18105 22.26%
## 4 Social 10346 10029 11101 61.92%
## 5 Display 5564 4790 7220 83.30%
## 6 Paid Search 2687 2205 3438 38.02%
## 7 Affiliates 1773 1585 2167 55.75%
read_excel('sample.xls', sheet = 1, range = "B1:C4")
## # A tibble: 3 x 2
## users new_users
## <dbl> <dbl>
## 1 43296 40238
## 2 12916 12311
## 3 10983 7636
read_excel('sample.xls', sheet = 1, col_names = FALSE,
range = anchored("A4", dim = c(3, 2)))
## # A tibble: 3 x 2
## X__1 X__2
## <chr> <dbl>
## 1 Referral 10983
## 2 Social 10346
## 3 Display 5564
read_excel('sample.xls', sheet = 1,
range = cell_limits(c(1, 1), c(6, 4)))
## # A tibble: 5 x 4
## channel users new_users sessions
## <chr> <dbl> <dbl> <dbl>
## 1 Organic Search 43296 40238 50810
## 2 Direct 12916 12311 16419
## 3 Referral 10983 7636 18105
## 4 Social 10346 10029 11101
## 5 Display 5564 4790 7220
read_excel('sample.xls', sheet = 1,
range = cell_limits(c(1, 2), c(NA, NA)))
## # A tibble: 7 x 4
## users new_users sessions bounce_rate
## <dbl> <dbl> <dbl> <chr>
## 1 43296 40238 50810 48.72%
## 2 12916 12311 16419 49.27%
## 3 10983 7636 18105 22.26%
## 4 10346 10029 11101 61.92%
## 5 5564 4790 7220 83.30%
## 6 2687 2205 3438 38.02%
## 7 1773 1585 2167 55.75%
read_excel('sample.xls', sheet = 1,
range = cell_limits(c(1, NA), c(NA, 2)))
## # A tibble: 7 x 2
## channel users
## <chr> <dbl>
## 1 Organic Search 43296
## 2 Direct 12916
## 3 Referral 10983
## 4 Social 10346
## 5 Display 5564
## 6 Paid Search 2687
## 7 Affiliates 1773
read_excel('sample.xls', sheet = 1, range = cell_cols(2))
## # A tibble: 7 x 1
## users
## <dbl>
## 1 43296
## 2 12916
## 3 10983
## 4 10346
## 5 5564
## 6 2687
## 7 1773
read_excel('sample.xls', sheet = 1, range = cell_rows(1:4))
## # A tibble: 3 x 5
## channel users new_users sessions bounce_rate
## <chr> <dbl> <dbl> <dbl> <chr>
## 1 Organic Search 43296 40238 50810 48.72%
## 2 Direct 12916 12311 16419 49.27%
## 3 Referral 10983 7636 18105 22.26%
read_excel('sample.xls', sheet = 1, range = cell_cols(2:3))
## # A tibble: 7 x 2
## users new_users
## <dbl> <dbl>
## 1 43296 40238
## 2 12916 12311
## 3 10983 7636
## 4 10346 10029
## 5 5564 4790
## 6 2687 2205
## 7 1773 1585
read_stata('airline.dta')
## # A tibble: 32 x 6
## year y w r l k
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1948 1.21 0.243 0.145 1.41 0.612
## 2 1949 1.35 0.260 0.218 1.38 0.559
## 3 1950 1.57 0.278 0.316 1.39 0.573
## 4 1951 1.95 0.297 0.394 1.55 0.564
## 5 1952 2.27 0.310 0.356 1.80 0.574
## 6 1953 2.73 0.322 0.359 1.93 0.711
## 7 1954 3.03 0.335 0.403 1.96 0.776
## 8 1955 3.56 0.350 0.396 2.12 0.827
## 9 1956 3.98 0.361 0.382 2.43 0.800
## 10 1957 4.42 0.379 0.305 2.71 0.921
## # ... with 22 more rows
read_spss('employee.sav')
## # A tibble: 474 x 9
## id gender educ jobcat salary salbegin jobtime prevexp minority
## <dbl> <chr+lbl> <dbl+> <dbl+l> <dbl+> <dbl+lb> <dbl+l> <dbl+l> <dbl+lb>
## 1 1 m 15 3 57000 27000 98 144 0
## 2 2 m 16 1 40200 18750 98 36 0
## 3 3 f 12 1 21450 12000 98 381 0
## 4 4 f 8 1 21900 13200 98 190 0
## 5 5 m 15 1 45000 21000 98 138 0
## 6 6 m 15 1 32100 13500 98 67 0
## 7 7 m 15 1 36000 18750 98 114 0
## 8 8 f 12 1 21900 9750 98 0 0
## 9 9 f 15 1 27900 12750 98 115 0
## 10 10 f 12 1 24000 13500 98 244 0
## # ... with 464 more rows
read_sas('airline.sas7bdat')
## # A tibble: 32 x 6
## YEAR Y W R L K
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1948 1.21 0.243 0.145 1.41 0.612
## 2 1949 1.35 0.260 0.218 1.38 0.559
## 3 1950 1.57 0.278 0.316 1.39 0.573
## 4 1951 1.95 0.297 0.394 1.55 0.564
## 5 1952 2.27 0.310 0.356 1.80 0.574
## 6 1953 2.73 0.322 0.359 1.93 0.711
## 7 1954 3.03 0.335 0.403 1.96 0.776
## 8 1955 3.56 0.350 0.396 2.12 0.827
## 9 1956 3.98 0.361 0.382 2.43 0.800
## 10 1957 4.42 0.379 0.305 2.71 0.921
## # ... with 22 more rows