## # A tibble: 1,000 x 7
## referrer device bouncers n_visit n_pages duration purchase
## <fct> <fct> <lgl> <dbl> <dbl> <dbl> <lgl>
## 1 google laptop TRUE 10 1 693 FALSE
## 2 yahoo tablet TRUE 9 1 459 FALSE
## 3 direct laptop TRUE 0 1 996 FALSE
## 4 bing tablet FALSE 3 18 468 TRUE
## 5 yahoo mobile TRUE 9 1 955 FALSE
## 6 yahoo laptop FALSE 5 5 135 FALSE
## 7 yahoo mobile TRUE 10 1 75 FALSE
## 8 direct mobile TRUE 10 1 908 FALSE
## 9 bing mobile FALSE 3 19 209 FALSE
## 10 google mobile TRUE 6 1 208 FALSE
## # ... with 990 more rows
## # A tibble: 5 x 1
## referrer
## <fct>
## 1 google
## 2 yahoo
## 3 direct
## 4 bing
## 5 social
## # A tibble: 3 x 1
## device
## <fct>
## 1 laptop
## 2 tablet
## 3 mobile
## # A tibble: 1,000 x 7
## referrer device bouncers n_visit n_pages time_on_site purchase
## <fct> <fct> <lgl> <dbl> <dbl> <dbl> <lgl>
## 1 google laptop TRUE 10 1 693 FALSE
## 2 yahoo tablet TRUE 9 1 459 FALSE
## 3 direct laptop TRUE 0 1 996 FALSE
## 4 bing tablet FALSE 3 18 468 TRUE
## 5 yahoo mobile TRUE 9 1 955 FALSE
## 6 yahoo laptop FALSE 5 5 135 FALSE
## 7 yahoo mobile TRUE 10 1 75 FALSE
## 8 direct mobile TRUE 10 1 908 FALSE
## 9 bing mobile FALSE 3 19 209 FALSE
## 10 google mobile TRUE 6 1 208 FALSE
## # ... with 990 more rows
## # A tibble: 700 x 7
## referrer device bouncers n_visit n_pages duration purchase
## <fct> <fct> <lgl> <dbl> <dbl> <dbl> <lgl>
## 1 bing tablet FALSE 2 5 150 FALSE
## 2 social tablet TRUE 9 1 157 FALSE
## 3 yahoo tablet TRUE 6 1 67 FALSE
## 4 direct laptop FALSE 1 14 364 TRUE
## 5 direct mobile FALSE 2 9 243 FALSE
## 6 direct tablet FALSE 10 3 57 FALSE
## 7 yahoo tablet TRUE 10 1 668 FALSE
## 8 yahoo tablet FALSE 2 20 320 FALSE
## 9 bing tablet TRUE 0 1 845 FALSE
## 10 yahoo mobile FALSE 8 9 225 FALSE
## # ... with 690 more rows
## # A tibble: 700 x 7
## referrer device bouncers n_visit n_pages duration purchase
## <fct> <fct> <lgl> <dbl> <dbl> <dbl> <lgl>
## 1 bing tablet TRUE 6 1 567 FALSE
## 2 bing tablet FALSE 6 9 198 FALSE
## 3 bing laptop TRUE 3 1 271 FALSE
## 4 bing mobile FALSE 10 1 26 FALSE
## 5 bing mobile TRUE 5 1 751 FALSE
## 6 bing tablet FALSE 1 8 144 FALSE
## 7 yahoo mobile TRUE 10 1 761 FALSE
## 8 bing laptop FALSE 8 10 260 TRUE
## 9 direct tablet FALSE 1 3 69 FALSE
## 10 google laptop TRUE 9 1 174 FALSE
## # ... with 690 more rows
## [1] mobile mobile mobile laptop mobile mobile laptop laptop tablet tablet
## Levels: laptop tablet mobile
## [1] yahoo google bing social google yahoo social yahoo google yahoo
## Levels: bing direct social yahoo google
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## # A tibble: 10 x 7
## referrer device bouncers n_visit n_pages duration purchase
## <fct> <fct> <lgl> <dbl> <dbl> <dbl> <lgl>
## 1 yahoo mobile TRUE 9 1 955 FALSE
## 2 yahoo laptop FALSE 5 5 135 FALSE
## 3 yahoo mobile TRUE 10 1 75 FALSE
## 4 direct mobile TRUE 10 1 908 FALSE
## 5 bing mobile FALSE 3 19 209 FALSE
## 6 google mobile TRUE 6 1 208 FALSE
## 7 direct laptop TRUE 9 1 738 FALSE
## 8 direct tablet FALSE 6 12 132 FALSE
## 9 direct mobile FALSE 9 14 406 TRUE
## 10 yahoo tablet FALSE 5 8 80 FALSE
## # A tibble: 1 x 7
## referrer device bouncers n_visit n_pages duration purchase
## <fct> <fct> <lgl> <dbl> <dbl> <dbl> <lgl>
## 1 google mobile TRUE 9 1 269 FALSE
## # A tibble: 5 x 2
## referrer n
## <fct> <int>
## 1 bing 194
## 2 direct 191
## 3 social 200
## 4 yahoo 207
## 5 google 208
## # A tibble: 10 x 3
## # Groups: referrer [?]
## referrer bouncers n
## <fct> <lgl> <int>
## 1 bing FALSE 104
## 2 bing TRUE 90
## 3 direct FALSE 98
## 4 direct TRUE 93
## 5 social FALSE 93
## 6 social TRUE 107
## 7 yahoo FALSE 110
## 8 yahoo TRUE 97
## 9 google FALSE 101
## 10 google TRUE 107
## # A tibble: 10 x 3
## # Groups: referrer [?]
## referrer purchase n
## <fct> <lgl> <int>
## 1 bing FALSE 177
## 2 bing TRUE 17
## 3 direct FALSE 166
## 4 direct TRUE 25
## 5 social FALSE 180
## 6 social TRUE 20
## 7 yahoo FALSE 185
## 8 yahoo TRUE 22
## 9 google FALSE 189
## 10 google TRUE 19
## # A tibble: 5 x 3
## # Groups: referrer [5]
## referrer purchase n
## <fct> <lgl> <int>
## 1 bing TRUE 17
## 2 direct TRUE 25
## 3 social TRUE 20
## 4 yahoo TRUE 22
## 5 google TRUE 19
## # A tibble: 10 x 3
## referrer purchase n
## <fct> <lgl> <int>
## 1 bing FALSE 177
## 2 bing TRUE 17
## 3 direct FALSE 166
## 4 direct TRUE 25
## 5 social FALSE 180
## 6 social TRUE 20
## 7 yahoo FALSE 185
## 8 yahoo TRUE 22
## 9 google FALSE 189
## 10 google TRUE 19
## Selecting by n
## # A tibble: 2 x 3
## referrer purchase n
## <fct> <lgl> <int>
## 1 direct TRUE 25
## 2 yahoo TRUE 22
## [1] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [12] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
## [23] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
ecom %>%
mutate(
repeat_visit = case_when(
n_visit > 0 ~ TRUE,
TRUE ~ FALSE
)
) %>%
select(n_visit, repeat_visit)
## # A tibble: 1,000 x 2
## n_visit repeat_visit
## <dbl> <lgl>
## 1 10 TRUE
## 2 9 TRUE
## 3 0 FALSE
## 4 3 TRUE
## 5 9 TRUE
## 6 5 TRUE
## 7 10 TRUE
## 8 10 TRUE
## 9 3 TRUE
## 10 6 TRUE
## # ... with 990 more rows
## [1] google
## Levels: bing direct social yahoo google
## [1] google
## Levels: bing direct social yahoo google
## [1] google
## Levels: bing direct social yahoo google
## [1] google
## Levels: bing direct social yahoo google